Bubble shrinkage no longer unpredictable

A big step for foaming simulation

Figure 1 The core-back process

In the plastic foaming injection process, the supercritical fluid (N2 or CO2) and the melt are firstly mixed into a uniform single-phase fluid through the screw, and the homogeneous mixture leads to thermodynamic instability due to instantaneous pressure release during the injection process. It makes the supercritical fluid in the melt generate tens of thousands of tiny bubbles through phase change, and after the mold cooling and solidification, the products with cell structures are obtained.

By adopting the Han and Yoo model of bubble growth dynamics, we can simulate the process and dynamics of the bubble growth. However, when the product’s geometric appearance gets complicated, and various processes are applied, the in-mold pressure will not always be low. For instance, the melt pressure at the thin area is still very high, and even higher than the packing pressure. On the other hand, the core-back process (Figure 1) will also bring additional packing pressure. Thus, the in-mold bubbles will not continue growing due to pressure release but may shrink because of the increasing in-mold melt pressure. Under the circumstances, the Han and Yoo model has limitations and is not able to accurately simulate the bubble shrinkage phenomena.

To improve the prediction capabilities of the original model, Moldex3D has collaborated with the Kanazawa University to develop the Modified Han and Yoo model. According to the bubble dynamic model proposed by Prof Taki from Kanazawa and the batch’s experimental data [1], the bubbles will surpass the energy barrier to nucleate and grow as the pressure releases. If the pressure on the bubbles increases, the bubbles will gradually shrink until they dissolve back into the melt (that is, it is back to the initial state of the mixture of melt and gas). If the pressure is released again at this time, the bubbles will nucleate and grow at the same location. The experimental results also have a very close trend with the bubble dynamic model, verifying the process of bubble shrinkage caused by the pressure imposed (Figure 3).

Figure 2 The bubble shrinkage experiment


Figure 3 The comparison of the simulation and experimental results

In the past, when the Han and Yoo model was used to simulate the thin-part geometry, the process of bubble shrinkage could not be accurately predicted. Therefore, the number of bubbles that disappeared due to the increasing pressure was underestimated. Now, in the latest Moldex3D 2021 version, the option of the Modified Han and Yoo model has been added (Figure 4). Compared with the original Han and Yoo model, the modified one can predict the shrinking bubbles more accurately (Figure 5). Similarly, if we apply this modified model in the core-back process, the required packing time for all the bubbles to dissolve back to the melt will be obtained.

Figure 4 The Modified Han and Yoo model option has been added in Moldex3D 2021.
Figure 5 The comparison of the original and Modified Han and Yoo models

The foaming process is very diverse and complicated and is widely applied in various fields. Therefore, it is particularly important to control the changes during the whole process. If we can accurately predict the bubble size through the microscopic model, it will be helpful for further prediction of many macroscopic properties such as heat transfer, mechanical strength, sound absorption, and low dielectric constant. As a result, the product design and production efficiency will be significantly enhanced.


[1] K. Taki et al., “3D Numerical simulation and experimental observation of bubble growth and collapse in Nitrogen-gas saturated molten polymer for the core-back foam injection molding”, ANTEC® 2021 – SPE.

The impact, resilience, and growth of responsible packaging in a wide region are daily chronicled by Packaging South Asia.

A multi-channel B2B publication and digital platform such as Packaging South Asia.is always aware of the prospect of new beginnings and renewal. Its 16-year-old print monthly, based in New Delhi, India has demonstrated its commitment to progress and growth. The Indian and Asian packaging industries have shown resilience in the face of ongoing challenges over the past three years.

As we present our publishing plan for 2023, India’s real GDP growth for the financial year ending 31 March 2023 will reach 6.3%. Packaging industry growth has exceeded GDP growth even when allowing for inflation in the past three years.

The capacity for flexible film manufacturing in India increased by 33% over the past three years. With orders in place, we expect another 33% capacity addition from 2023 to 2025. Capacities in monocartons, corrugation, aseptic liquid packaging, and labels have grown similarly. The numbers are positive for most of the economies in the region – our platform increasingly reaches and influences these.

Even given the disruptions of supply chains, raw material prices, and the challenge of responsible and sustainable packaging, packaging in all its creative forms and purposes has significant headroom to grow in India and Asia. Our context and coverage engulf the entire packaging supply chain – from concept to shelf and further – to waste collection and recycling. We target brand owners, product managers, raw material suppliers, packaging designers and converters, and recyclers.

In an admittedly fragmented and textured terrain, this is the right time to plan your participation and marketing support communication – in our impactful and highly targeted business platform. Tell us what you need. Speak and write to our editorial and advertising teams! For advertisement ads1@ippgroup.in , for editorial info@ippgroup.in and for subscriptions subscription@ippgroup.in

– Naresh Khanna

Subscribe Now


Please enter your comment!
Please enter your name here